Methodology for assessing the resilience of an autonomous microgrid

Alexey V. Edelev, Dmitriy N. Karamov, Olga Yu. Basharina

Melentiev Energy Systems Institute SB RAS, National Research Irkutsk State Technical University, Matrosov Institute for System Dynamics and Control Theory of SB RAS, Ural State University of Economics

Abstract. This article is the second in a series devoted to the study of the resilience of isolated local-level energy complexes or autonomous microgrids using previously developed digital twin technology of a complex technical system. Vitality is the ability of microgrids to adapt to large disturbances and restore their original state after their impact. The study of the resilience of energy complexes is traditionally based on multivariate computational experiments. However, a digital twin associated with a real microgrid or test bench makes it possible to combine computational experiments and field experiments in the study of microgrid resilience. Two-way communication between a digital twin and the equipment of a microgrid or test bench is provided by a specialized subject-oriented environment, the architecture of which is presented in this article. The proposed environment architecture includes a monitoring system, which, in addition to collecting data on the state of computing facilities and communication equipment, is adapted to collecting data from instrumentation of power equipment and microgrid automation. The article also develops a methodology for assessing the resilience of an autonomous microgrid using its digital twin. The input data for the resilience assessment methodology are the values of the digital twin parameters, information from the monitoring system, microgrid configurations, performance indicators, summary indicators, and the output is resilience curves. The developed methodology will be further used in solving various classes of problems in the subject area of resilience research, for example, in analyzing the vulnerability of microgrids.

microgrid, resilience, vulnerability, mathematical model, energy hub, subject-oriented environment, testbed

Back