УДК 519.6: 533.1: 620.1 DOI:10.25729/ESI.2023.30.2.006

Нестационарная двухмерная численная модель конвективно-пленочного охлаждения пластины на основе явной конечно-разностной схемы предиктор-корректор

Тукмаков Алексей Львович^{1,2}, Щукин Андрей Викторович¹, Харьков Виталий Викторич¹, Тукмакова Надежда Алексеевна¹, Ахунов Адель Айратович¹, Тукмаков Дмитрий Алексеевич² ¹Казанский национальный исследовательский технический университет,

²Федеральный исследовательский центр Казанский научный центр РАН,

Россия, Казань, tukmakov@imm.knc.ru

Аннотация. В работе представлена нестационарная модель течения вязкого сжимаемого теплопроводного газа, позволяющая описать тепловые и скоростные поля, создаваемые основным высокотемпературным потоком, протекающим с внешней стороны пластины, внутренним охлаждающим потоком и струей, создающей охлаждающую пленку на защищаемой поверхности. Динамика газа описана на основе численного решения системы уравнений Навье-Стокса явным методом Мак-Кормака с расщеплением исходного оператора по пространственным направлениям и схемой нелинейной коррекции. Блочная конечно-разностная сетка построена методом Томпсона со сгущением узлов в пристеночной области. В качестве модели подсеточной турбулентности применяется алгебраическая модель Смагоринского. Записана итерационная схема Зейделя для стационарного уравнения теплопроводности в обобщенных криволинейных координатах.

Ключевые слова: уравнения Навье-Стокса, явная схема Мак-Кормака, уравнение теплопроводности, пристеночные функции, конвективно-пленочное охлаждение

Цитирование: Тукмаков А.Л. Нестационарная двухмерная численная модель конвективно-пленочного охлаждения пластины на основе явной конечно-разностной схемы предиктор-корректора / А.Л. Тукмаков, А.В. Щукин, В.В. Харьков, Н.А. Тукмакова, А.А. Ахунов, Д.А. Тукмаков // Информационные и математические технологии в науке и управлении. – 2023. – № 2(30). – С. 57-67. – DOI:10.25729/ESI.2023.30.2.006.

Введение. Одним из применений математических методов является разработка математических моделей физических процессов. Математические модели газовой динамики представляют собой нелинейные системы уравнений в частых производных, для интегрирования которых в частности применяются численные алгоритмы. В данной работе к системе уравнений динамики газа применен один из конечно-разностных методов, реализованный в виде компьютерной программы. Для определения сеточной сходимости численного алгоритма проведен ряд численных экспериментов на последовательности вложенных сеток. Математическая модель описывала процесс конвективно-пленочного охлаждения.

Актуальность моделирования конвективно-пленочной системы воздушного охлаждения турбин газотурбинных двигателей определяется требованиями разработки системы расчета и проектирования турбинных лопаток, позволяющей обеспечить минимально возможный расход охлаждающего воздуха при прочих равных условиях [1]. Данная задача является одной из приоритетных для турбостроения, так как основным направлением в совершенствовании авиационных газотурбинных двигателей остается повышение температуры и давления газа перед турбиной высокого давления, что требует создания жаропрочных сплавов и совершенствования систем охлаждения [2].

Важно отметить, что при увеличении температуры газа перед турбиной, достигающей в настоящее время 1900...2000 К, с каждого килограмма горячего газа вырабатывается больше полезной работы [3]. Для реализации «заградительных» способов охлаждения были разработаны различные схемы подачи воздуха на внешнюю поверхность турбинных лопаток, такие, как инжекционные [4], эффузионные [5], транспирационные [6] и пленочные варианты [7].

Наиболее хорошо себя зарекомендовали системы пленочного охлаждения с вдувом охлаждающего воздуха через отверстия и щели в поток горячего газа. Они являются наиболее технологичными, надежными и эффективными способами тепловой защиты [4].

Наряду с физическим экспериментом, исследование термо- и газодинамических процессов, происходящих при конвективно-пленочном охлаждении, ведется методами математического моделирования [8]. В практике инженерных расчетов, наряду с осредненными по Рейнольдсу уравнениями Навье-Стокса и их замыканием с помощью полуэмпирических моделей турбулентности (RANS), используются различные модели крупных вихрей (LES) с подсеточными моделями вихревой турбулентной вязкости [9-11]. В данной работе для описания процессов, сопровождающих конвективно-пленочное охлаждение плоской пластины используется метод крупных вихрей с использованием пристеночных функций для решения нестационарной системы уравнений вязкого сжимаемого теплопроводного газа с моделью подсеточной вязкости Смагоринского [9-11]. Для получения квазистационарных решений применяется метод установления.

1. Схема расчетной области и методика расчета. Схема расчетной области приведена на рис. 1. Пластина разделяет потоки горячего (область V) и холодного газа (область I), движущиеся со скоростями U, температурами T, плотностями ρ и давлениями p. Параметры горячего потока на входе – U₁, T₁, ρ_1 , p_1 , холодного – U₂, T₂, ρ_2 , p_2 . Области соединяются плоским каналом, расположенным под углом α к верхней и нижней поверхностям пластины. В области холодного течения (I) создано более высокое давление $p_2 > p_1$, в результате чего формируется холодная струя, создающая защитную пленку на внешней поверхности пластины в области V. В процессе взаимодействия с горячим потоком происходят нагрев и разрушение защитной пленки. Интерес представляет анализ температурных полей по обе стороны от пластины и распределения температуры внутри нее при различных режимных параметрах потоков, геометрических параметрах пластины и канала, интенсивностях теплоотдачи на внутренней и внешней обтекаемых поверхностях.

Для описания динамики газа была использована система уравнений метода LES в обобщенных криволинейных координатах $\xi = \xi(x, y)$, $\eta = \eta(x, y)$ [11], где $(x, y) - \varphi$ изические, а ξ , $\eta - \varphi$ расчетные координаты [12–15]:

$$\mathbf{q}_t + \mathbf{F}_{\xi} + \mathbf{G}_{\eta} = \mathbf{H}, \qquad (1)$$

где **q** – вектор независимых газодинамических функций в консервативной форме; t – время; **F**, **G** – вектора потоков, включающие в себя идеальную и вязкую составляющие; **H** – источни-ковое слагаемое;

$$\mathbf{q} = \begin{bmatrix} \frac{\rho}{J}, \frac{\rho u}{J}, \frac{\rho v}{J}, \frac{E}{J} \end{bmatrix}^{T};$$

$$\mathbf{F} = \frac{1}{J} \begin{bmatrix} \xi_{x} \rho u + \xi_{y} \rho v \\ \xi_{x} \left(\rho u^{2} + p - \tau_{xx}\right) + \xi_{y} \left(\rho uv - \tau_{xy}\right) \\ \xi_{x} \left(\rho uv - \tau_{xy}\right) + \xi_{y} \left(\rho v^{2} + p - \tau_{yy}\right) \\ \xi_{x} \left(\left(E + p - \tau_{xx}\right)u - \tau_{xy}v + Q_{x}\right) + \xi_{y} \left(\left(E + p - \tau_{yy}\right)v - \tau_{xy}u + Q_{y}\right) \end{bmatrix}$$

58

$$\mathbf{G} = \frac{1}{J} \begin{bmatrix} \eta_x \rho u + \eta_y \rho v \\ \eta_x \left(\rho u^2 + p - \tau_{xx}\right) + \eta_y \left(\rho uv - \tau_{xy}\right) \\ \eta_x \left(\rho uv - \tau_{xy}\right) + \eta_y \left(\rho v^2 + p - \tau_{yy}\right) \\ \eta_x \left((E + p - \tau_{xx})u - \tau_{xy}v + Q_x\right) + \eta_y \left((E + p - \tau_{yy})v - \tau_{xy}u + Q_y\right) \end{bmatrix}$$

$$\mathbf{H} = \frac{1}{J} \begin{bmatrix} div(v_t \nabla \rho) \\ 0 \\ 0 \end{bmatrix} ;$$

Здесь ρ , *u*, *v*, *E*, *I*, *T*, *p* – плотность, продольная и поперечная составляющие скорости, полная и внутренняя энергия, температура и давление газа, соответственно; *J* – якобиан перехода; ξ_x , ξ_y , η_x , η_y – метрические коэффициенты; Q_x , Q_y – тепловые потоки ; τ_{xx} , τ_{yy} , τ_{xy} – составляющие тензора вязких напряжений:

$$\tau_{xy} = \left(\mu + \mu_t\right) \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right); \quad \tau_{xx} = 2\left(\mu + \mu_t\right) \frac{\partial u}{\partial x} - \frac{2}{3}\left(\mu + \mu_t\right) div(\mathbf{U});$$

$$\tau_{yx} = \tau_{xy}; \quad \tau_{yy} = 2\left(\mu + \mu_t\right) \frac{\partial v}{\partial y} - \frac{2}{3}\left(\mu + \mu_t\right) \cdot div(\mathbf{U}); \quad div(\mathbf{U}) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y},$$

μ, μ_t – динамическая молекулярная и подсеточная вихревая вязкость газа, соответственно.

Составляющие теплового потока Q_x и Q_y :

$$Q_x = -(\mathbf{k} + \mathbf{k}_t) \frac{\partial T}{\partial x}; \quad Q_y = -(\mathbf{k} + \mathbf{k}_t) \frac{\partial T}{\partial y}; \quad \mathbf{k}_t = C_p \mathbf{\mu}_t / Pr_t,$$

где Pr_t – подсеточное турбулентное число Прандтля; k, k_t – коэффициенты молекулярной и подсеточной вихревой теплопроводности, соответственно; C_p – удельная теплоемкость при постоянном давлении.

Полная энергия газа рассчитывалась по уравнению $E = I + 0.5\rho(u^2 + v^2)$, а внутренняя энергия газа – $I = \rho C_v T$, где C_v – удельная теплоемкость при постоянном объеме. Температура газа определялась как $T = (E - 0.5\rho(u^2 + v^2)) / \rho C_v$, а давление газа – $p = (\gamma - 1)\rho I$ где γ – постоянная адиабаты.

Метрические коэффициенты и якобиан перехода от расчетных координат к физическим задаются в виде [12–15]: $\xi_x = J \cdot y_{\eta}, \ \xi_y = -J \cdot x_{\eta}, \ \eta_x = -J \cdot y_{\xi}, \ \eta_y = J \cdot x_{\xi}, \ J = \xi_x \eta_y - \xi_y \eta_x$.

Система (1) решалась явным методом Мак-Кормака второго порядка [13, 15-18] с расщеплением исходного оператора по пространственным направлениям:

$$\mathbf{q}_{j,k}^{n+1} = \mathbf{P}_{\xi}(\Delta t_{\xi} / 2) \mathbf{P}_{\eta}(\Delta t_{\eta} / 2) \mathbf{P}_{\eta}(\Delta t_{\eta} / 2) \mathbf{P}_{\xi}(\Delta t_{\xi} / 2) \mathbf{q}_{j,k}^{n}$$
(2)

Переход с временного слоя t^n на слой t^{n+1} за счет применения одномерных операторов к вектору газодинамических функций с предыдущего слоя осуществляется следующим образом:

$$\mathbf{q}_{j,k}^{(1)} = \mathbf{P}_{\xi}(\Delta t_{\xi}/2)\mathbf{q}_{j,k}^{n} , \quad \mathbf{q}_{j,k}^{(2)} = \mathbf{P}_{\eta}(\Delta t_{\eta}/2)\mathbf{q}_{j,k}^{(1)} , \mathbf{q}_{j,k}^{(3)} = \mathbf{P}_{\eta}(\Delta t_{\eta}/2)\mathbf{q}_{j,k}^{(2)} , \quad \mathbf{q}_{j,k}^{n+1} = \mathbf{P}_{\xi}(\Delta t_{\xi}/2)\mathbf{q}_{j,k}^{(3)} .$$
(3)

Здесь $\Delta t_{\xi} = \Delta t_{\eta} = \Delta t$. Так, для получения промежуточных значений вектора $\mathbf{q}^{(1)}$ необходимо применить одномерный оператор $\mathbf{P}_{\xi}(\Delta t_{\xi}/2)$ по переменной ξ к вектору газодинамических функций на временном слое t^n . Действие каждого одномерного оператора **P** состоит в последовательном выполнении шагов «предиктор» и «корректор» по соответствующей пространственной переменной:

$$\mathbf{q}_{j,k}^{(1)*} = \mathbf{q}_{j,k}^{n} - \frac{(\Delta t_{\xi}/2)}{\Delta \xi} \Big(\mathbf{F}_{j+1,k}^{n} - \mathbf{F}_{j,k}^{n} \Big), \tag{4}$$

$$\mathbf{q}_{j,k}^{(1)} = 0.5(\mathbf{q}_{j,k}^{n} + \mathbf{q}_{j,k}^{(1)*}) - 0.5 \frac{(\Delta t_{\xi} / 2)}{\Delta \xi} \left(\mathbf{F}_{j,k}^{(1)*} - \mathbf{F}_{j-1,k}^{(1)*} \right),$$
(5)

$$\mathbf{q}_{j,k}^{(2)*} = \mathbf{q}_{j,k}^{1} - \frac{(\Delta t_{\eta} / 2)}{\Delta \eta} \Big(\mathbf{G}_{j,k+1}^{(1)} - \mathbf{G}_{j,k}^{(1)} \Big),$$
(6)

$$\mathbf{q}_{j,k}^{(2)} = 0.5(\mathbf{q}_{j,k}^{1} + \mathbf{q}_{j,k}^{(2)*}) - 0.5 \frac{(\Delta t_{\eta} / 2)}{\Delta \eta} \Big(\mathbf{G}_{j,k}^{(2)*} - \mathbf{G}_{j,k-1}^{(2)*} \Big), \text{ и т. д.}$$
(7)

На шаге «предиктор» аппроксимация производных по ξ , входящих в $\mathbf{F}_{j+1,k}^n$, $\mathbf{F}_{j,k}^n$ выполняется с помощью левой разностной схемы первого порядка точности, на шаге «корректор» – при помощи правой, а производные по η приближаются центральными разностными схемами второго порядка. Производные по η , входящие в $\mathbf{G}_{j,k+1}^n$, $\mathbf{G}_{j,k}^n$ аппроксимируются на шаге «предиктор» левыми разностными схемами первого порядка, а на шаге «корректор» – правыми. Разностные производные по ξ в $\mathbf{G}_{j,k+1}^n$, $\mathbf{G}_{j,k}^n$ на каждом шаге – центральные.

Подсеточная динамическая вязкость определялась при помощи модели Смагоринского [10]:

$$\mu_t = \rho(C_{\mu}\Delta)^2 S, \quad \Delta = \min(\Delta x, \Delta y), \quad S = \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \frac{1}{2}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}$$

где C_{μ} – константа Смагоринского, $C_{\mu} = 0.151$.

60

Блочно-структурированная конечно-разностная сетка строилась путем объединения сеточных блоков области течения газа, показанных на рис. 16. Внутри каждого блока для построения сетки применялся метод Томпсона [13]. Сетки смежных блоков, в том числе, твердотельные, предназначенные для решения задачи теплопроводности, строились конформные, с совпадающими на границах блоков узлами.

На твердых границах расчетной области для составляющих скорости задавались условия прилипания, для давления, температуры, энергии и плотности газа – однородные граничные условия 2 рода. На входных границах областей течения горячего и холодного газа задавались давление, плотность и температура, а также однородные граничные условия 2 рода для составляющих скорости. На выходных границах задавались значения давления и ставились однородные граничные условия 2 рода для остальных газодинамических функций.

Для моделирования теплового пограничного слоя и определения температуры поверхности пластины применялись скоростная и тепловая пристеночные функции, связывающие безразмерные параметры $T^+ = (T_w - T_i) / T_\tau$ и $y^+ = \rho u_\tau d_0 / \mu$. Здесь T_w – температура стенки в данном узле на поверхности пластины; T_i – температура потока в ближайшем к нему узле газодинамической сетки; $T_\tau = q_w / (\rho C_p u_\tau)$ – температура трения [19]; d_0 – расстояние от узла, расположенного на поверхности пластины до ближайшего узла газодинамической сетки. Использовалась тепловая пристеночная функция вида [19]:

$$T^{+}(\mathbf{y}^{+}) = \begin{cases} y^{+}Pr, \ y^{+}Pr < 1, \\ 1.87\ln(y^{+}Pr+1) + 0.065 \ y^{+}Pr - 0, 36, \ 1 \le y^{+}Pr \le 11.7, \\ 2.5\ln(y^{+}Pr) - 1, \ y^{+}Pr > 11.7 \end{cases}$$
(8)

Касательное напряжение поверхностного трения τ_w и динамическая скорость $u_{\tau} = (\tau_w / \rho)^{1/2}$ определяются методом, описанным в [20]. Тепловой поток выражается через температуру трения и параметр T^+ [19]: $q_w = (T_w - T_i)\rho C_p u_{\tau} / T^+$. Отсюда коэффициент теплоотдачи на поверхности пластина-газ $\alpha = \rho C_p u_{\tau} / T^+$.

Зная температуры газа T_1 , T_2 вблизи горячей и холодной поверхностей пластины в ближайших к поверхности узлам газовой сетки, коэффициенты теплоотдачи поверхностей α_1 , α_2 , теплопроводность пластины λ и ее толщину h, найдем температуры в узлах на поверхностях пластины [21]:

$$T_{w1} = T_1 - (k_c / \alpha_1)(T_1 - T_2), \ T_{w2} = T_2 + (k_c / \alpha_2)(T_1 - T_2), \ (9)$$

где $\alpha_1 = \rho_1 C_p u_{\tau 1} / T_1^+$, $\alpha_2 = \rho_2 C_p u_{\tau 2} / T_2^+ -$ коэффициенты теплоотдачи со стороны горячего и холодного потоков; $k_c = (1/\alpha_1 + 1/\alpha_2 + h/\lambda)^{-1} -$ коэффициент теплопередачи стенки. В ряде работ газодинамическая задача о формировании пленочного заграждения описывается в предположении о нетеплопроводной стенке [8]. Такая модель реализуется при $\lambda \rightarrow 0$. Из (9) следует, что при этом условии температура поверхности стенки равна температуре газа в области, прилегающей к поверхности: $T_{w1} = T_1$, $T_{w2} = T_2$. Другой предельный случай реализуется при $\lambda \rightarrow \infty$, в частности, при $\alpha_1 = \alpha_2$: $T_{w1} = T_{w2} = (T_1 + T_2)/2$. При решении сопряженной задачи коэффициент теплопередачи рассчитывается с учетом толщины пластины и коэффициента теплопроводности.

В квазидинамическом приближении решение уравнения теплопроводности сводится к решению уравнения Лапласа, записанному в обобщенных криволинейных координатах и разрешенному относительно температуры в узле (j, k):

$$\begin{split} T_{j,k} &= \frac{\left(\Delta\xi\Delta\eta\right)^2}{2\left(a\Delta\eta^2 + c\Delta\xi^2\right)} \times \left(a\frac{T_{j+1,k} + T_{j-1,k}}{\Delta\xi^2} + c\frac{T_{j,k+1} + T_{j,k-1}}{\Delta\eta^2} + \\ &+ 0.5b\frac{T_{j+1,k+1} + T_{j-1,k-1} - T_{j-1,k+1} - T_{j+1,k-1}}{\Delta\xi\Delta\eta} + d\frac{T_{j+1,k} - T_{j-1,k}}{2\Delta\xi} + e\frac{T_{j,k+1} - T_{j,k-1}}{2\Delta\eta}\right), \\ a &= \xi_x^2 + \xi_y^2, \ b &= \xi_x \eta_x + \xi_y \eta_y, \ c &= \eta_x^2 + \eta_y^2, \ d &= \xi_{xx} + \xi_{yy}, \ e &= \eta_{xx} + \eta_{yy} \\ &\quad \xi_{xx} + \xi_{yy} = \left[Jy_\eta\right]_{\xi} \xi_x + \left[Jy_\eta\right]_{\eta} \eta_x - \left[Jx_\eta\right]_{\xi} \xi_y - \left[Jx_\eta\right]_{\eta} \eta_y, \\ &\quad \eta_{xx} + \eta_{yy} = -\left[Jy_\xi\right]_{\xi} \xi_x - \left[Jy_\xi\right]_{\eta} \eta_x + \left[Jx_\xi\right]_{\xi} \xi_y + \left[Jx_\xi\right]_{\eta} \eta_y. \end{split}$$

На каждом временном шаге определялась температура газа в узлах газодинамической расчетной области, задавались граничные условия для температуры пластины на границах твердотельных блоков. Во внутренних узлах твердотельных блоков температура может быть определена из решения уравнения Лапласа, записанного в обобщенных криволинейных координатах методом Зейделя с контролем сходимости решения.

Монотонность решения, полученного методом Мак-Кормака, достигалась применением алгоритма нелинейной коррекции [22] к вектору газодинамических функций $U = (\rho, u, v, E)^T$ после перехода на следующий временной слой (при $t = t^{n+1}$):

$$U_{j} = \tilde{U}_{j} + k \left(\delta \Phi_{j+\frac{1}{2}} - \delta \Phi_{j-\frac{1}{2}} \right)$$
(10)

где $\delta \Phi_{j+\frac{1}{2}} = \delta \tilde{U}_{j+\frac{1}{2}}$, если $\left(\delta \tilde{U}_{j-\frac{1}{2}} \cdot \delta \tilde{U}_{j+\frac{1}{2}}\right) < 0$, или $\left(\delta \tilde{U}_{j+\frac{1}{2}} \cdot \delta \tilde{U}_{j+\frac{3}{2}}\right) < 0$, и $\delta \Phi_{j+\frac{1}{2}} = 0$ в любом другом случае. Здесь $\delta \tilde{U}_{j+\frac{1}{2}} = \tilde{U}_{j+1} - \tilde{U}_j$, \tilde{U}_j – значение функции после перехода на (n+1) вре-

менной слой по схеме Мак-Кормака без применения схемы коррекции, коэффициент k = 0.125. Коррекция выполнялась последовательно по всем строкам вдоль координатных линий ξ , а затем по всем столбцам вдоль координатных линий η в расчетной области.

2. Результаты расчетов. В начальный момент времени во внутренних узлах газовой расчетной области задавались температура, плотность и составляющие скорости газа. В узлах твердотельных областей II, IV (рис. 1) – значения температуры пластины.

Рассматривалось течение воздуха в областях по обе стороны от пластины, соединенных наклонным каналом (рис. 1а). Длина расчетной области L = 0.16 м, высота $h_1 = 0.1$ м, $h_2 = 0.08$ м. Расстояние вдоль пластины от входного сечения до боковой стенки наклонной щели $|F_2E_2| = 0.07$ м. В начальный момент времени задавались температуры и плотности неподвижного газа в узлах газодинамической сетки: $T_{20} = 299$ К, $\rho_{10} = 1.6$ кг/м³, $T_{10} = 600$ К, $\rho_{20} = 0.76$ кг/м³, а также температура в узлах твердотельной сетки $T = T_{20}$. Давление газа на входе и выходе областей I и V составляло, соответственно: $p_{ex} = 1.1p_{20}$, $p_{ebax} = 0.9p_{20}$, $p_{ex} = 1.1p_{10}$, $p_{ebax} = 0.9p_{10}$, где $p_{20} = 128$ кПа и $p_{10} = 120.5$ кПа – начальные давления газа в областях I и V. Расчеты проводились для воздуха при $Pr_t = 0.9$. На верхней границе области V и на нижней границе области I для всех газодинамических функций, задавались однородные граничные условия 2 рода (рис. 16). Толщина пластины h и ширина наклонной щели d составляли h = d = 0.003 м, коэффициент теплопроводности составлял $\lambda = 200$ BT/(м·K).

Рис. 1. Схема расчетной области (а), расположение сеточных блоков (б) и фрагмент конечно-разностной сетки в окрестности канала (в): 1 – горячий поток; 2 – холодный поток; 3 – зона формирования пленки

Для оценки работоспособности метода проводились расчеты течения газа в канале с инжектируемой в поток струей под заданным углом. Расчетная область покрывалась равномерной вдоль осей сеткой с числом узлов $I \times J = 200 \times 200$. Задавались начальные плотности, скорости, температура газа. На боковых стенках канала для составляющих скорости ставились условия прилипания и однородные граничные условия 2 рода для остальных газодинамических функций. На нижней стенке канала при 0.15 м < x < 0.173 м задавались нормальная и касательная составляющие скорости струи. На входной границе канала для всех газодинамических функций задавались однородные граничные условия 2 рода. На выходной границе задавалась продольная составляющая скорости и однородные граничные условия 2 рода для остальных функций. На рис. 2 приведено поле скоростей потока в случае, когда ширина щели, образующей с нижней стенкой угол $\alpha = 35^0$, равна d = 0.013 м. В этом случае сечение щели располагается при 0.15 м < x < 0.173 м. Расчеты показывают, что ниже области вдува (x > 0.173 м) формируется вихрь (рис. 2).

На рис. 3 приведено пространственное распределение величины, равной отношению подсеточной динамической вязкости к молекулярной. Наибольшая величина подсеточной вязкости ($\mu_t / \mu \approx 50$) достигается на границах области вдува и в области, где располагается вихревая структура.

Рис. 3. Пространственное распределение подсеточной вязкости в расчетной области

На рис. 4а, б приведены результаты расчетов процесса установления температуры (а) и плотности газа (б) в точке (x = L/2, $y = h_2 + d + 0.5h_1$) на сетках с числом узлов 200×200, 300×300, 400×400. Сопоставление результатов расчетов на вложенной последовательности сеток демонстрирует сходимость конечно-разностного решения.

63

Рис. 4. Процесс установления температуры (а) и плотности газа (б) в точке (x = L/2, $y = h_2 + d + 0.5h_1$) при измельчении конечно-разностной сетки

Заключение. В работе на основе численного решения системы уравнений Навье-Стокса проведены расчеты, выполненные при значении параметра вдува *m*=(ρ₂|*U*₂|)/(ρ₁|*U*₁|)≈0.65 и отрывном режиме течения струи. Исследована сеточная сходимость конечно-разностной модели пленочного охлаждения пластины. Выявлено, что ниже области вдува происходит формирование вихревой структуры. Определено, что наибольшая величина подсеточной вязкости достигается на границах области вдува и в области, где формируется вихрь.

Благодарности. Работа выполнялась в рамках государственного задания ФИЦ КазНЦ РАН.

Список источников

- 1. Локай В.И. Теплопередача в охлаждаемых деталях газотурбинных двигателей / В.И. Локай, М.Н. Бодунов, В.В. Жуйков, А.В. Щукин. М.: Машиностроение, 1993. –287 с.
- Марчуков Е.Ю. Эффективность пленочного охлаждения плоской поверхности в ускоряющемся потоке при вдуве воздуха через веерные отверстия / Е. Ю. Марчуков, А.В. Стародумов, А.В. Ильинков, А.В. Щукин, А.М. Ермаков, В.В. Такмовцев, П.А. Попов // Теплоэнергетика, 2022. – Т. 69. – № 4. – С. 70-80.
- 3. Han J. C. Advanced cooling in gas turbines 2016 Max Jakob Memorial Award Paper. Journal of heat transfer, 2018, vol. 140, no. 11.
- 4. Fathi M., Nejat A. Conjugate heat transfer investigation of impingement cooling for ribbed internal passage of a turbine vane. International Journal of Thermal Sciences, 2022, vol. 178.
- 5. Krewinkel R. A review of gas turbine effusion cooling studies. International Journal of Heat and Mass Transfer, 2013, vol. 66, pp. 706-722.
- Kim M. Shin D., Kim J., Lee B., Lee J. Experimental investigation of effusion and transpiration air cooling for single turbine blade. Applied Thermal Engineering, 2021, vol. 182.
- 7. Zhang J., Zhang S., Wang C., Tan X. Recent advances in film cooling enhancement: A review. Chinese Journal of Aeronautics, 2020, vol. 33, no. 4, pp. 1119-1136.
- 8. Krishna V.G., Anand K.M. Parammasivam Thermal barrier coated surface modifications for gas turbine film cooling: a review. Journal of Thermal Analysis and Calorimetry, 2021, vol. 146, no. 2, pp. 545-580.
- Волков К.Н. Моделирование крупных вихрей в расчетах турбулентных течений / К.Н. Волков, В.Н. Емельянов. – М.: ФИЗМАТЛИТ, 2008. – 368 с.
- 10. Юрокина Ю.В. Неустойчивость Кельвина-Гельмгольца в плоском слое смешения / Ю.В. Юрокина // Математическое моделирование, 1999. Т. 11. № 4. С. 83-99.
- Гарбарук А.В. Моделирование турбулентности в расчетах сложных течений / А. В. Гарбарук, М.Х. Стрелец, М.Л. Шур. – СПб.: Изд-во Политехнического университета, 2012. – 88 с.
- Ковеня В.М. Применение метода расщепления в задачах аэродинамики / В.М. Ковеня, Г.А. Тарнавский, С.Г. Черный. – Новосибирск: Наука. Сибирское Отделение, 1990. – 242 с.
- 13. Флетчер К. Вычислительные методы в динамике жидкостей / К. Флетчер. М.: Мир, 1991. Т. 2. 502 с.
- 14. Steger J.L. Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries. AIAA Journal, 1978, vol. 16, no. 7, pp. 679-686.
- 15. Ажаронок В.В. Динамика рабочей среды диффузионно-охлаждаемого электроразрядного СО2-лазера при

периодическом тепловыделении в окрестности оси разрядно-резонаторной трубки / В.В. Ажаронок, А.Л. Тукмаков // Инженерно-физический журнал, 2014. – Т. 87. – № 6. – С. 1409-1418.

- 16. Тукмаков А.Л. Численное исследование влияния параметров дисперсных частиц на осаждение твердой фазы электрически заряженной полидисперсной газовзвеси / А.Л. Тукмаков, Д.А. Тукмаков // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2022. – Т. 22. – № 1. – С. 90-102.
- 17. Тукмаков Д.А. Численное моделирование распространения ударной волны из газа в электрически заряженную и нейтральную газовзвеси в плоском канале / Д.А. Тукмаков // Фундаментальные и прикладные проблемы техники и технологии, 2020. Т. 340. № 2. С. 9-18.
- 18. Тукмаков Д.А. Численное моделирование взаимодействия газовзвеси с ударной волной континуальными математическими моделями с идеальной и диссипативными несущими средами / Д.А. Тукмаков // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика, 2022. – Т. 11. – № 4. – С. 67-87.
- 19. Ефремов В.Р. Использование пристеночных функций для моделирования турбулентного теплового пограничного слоя / В.Р. Ефремов, В.В. Курулин, А.С. Козелков, А.А. Куркин, Д.А. Уткин // Журнал вычислительной математики и математической физики, 2019. – Т. 59. – № 6. – С. 1037-1046.
- 20. Луцкий А.Е. Простейшая реализация метода пристеночных функций / А.Е. Луцкий, А.В. Северин // Препринты ИПМ им. М.В. Келдыша РАН, 2013. № 38.
- 21. Мухачев Г.А. Термодинамика и теплопередача. / Г.А. Мухачев, В.К. Щукин. М.: Высшая школа, 1991. 479 с.
- 22. Музафаров И.Ф. Применение компактных разностных схем к исследованию нестационарных течений сжимаемого газа / И.Ф. Музафаров, С.В. Утюжников // Математическое моделирование, 1993. – № 3. – С. 74-83.

Тукмаков Алексей Львович. Доктор физико-математических наук, профессор Казанского национального исследовательского технического университета. Основные направления исследований: механика жидкости и газа. SPIN: 9496-7540, AuthorID: 6385, tukmakov@imm.knc.ru, г. Казань, ул. К.Маркса 10.

Шукин Андрей Викторович. Доктор технических наук, профессор Казанского национального исследовательского технического университета. Основные направления исследований: теплофизика. SPIN: 9930-7392, AuthorID: 27448, a.v.shchukin@rambler.ru, г.Казань, ул. К.Маркса 10.

Харьков Виталий Викторич. Кандидат технических наук, доцент Казанского национального исследовательского технического университета. Основные направления исследований: процессы химических технологий. SPIN: 7055-7282, AuthorID: 811526, v.v.kharkov@gmail.com, г.Казань, ул. К.Маркса 10.

Тукмакова Надежда Алексеевна. Кандидат технических наук, доцент Казанского национального исследовательского технического университета. Основные направления исследований: механика жидкости и газа. SPIN: 3245-6962, AuthorID: 908006, nadejdatukmakova@yandex.ru, г.Казань, ул. К.Маркса 10.

Ахунов Адель Айратович. Аспирант Казанского национального исследовательского технического университета. Основные направления исследований: механика жидкости и газа. SPIN: 1040-8375, AuthorID: 857165, white-bars95@yandex.ru, г.Казань, ул. К.Маркса 10.

Тукмаков Дмитрий Алексеевич. Кандидат физ.- мат. наук, научный сотрудник Федерального исследовательского центра Казанского научного центра РАН. Основные направления исследований: механика жидкости и газа, AuthorID: 739648, SPIN: 3556-8576, tukmakovda@imm.knc.ru, г.Казань, ул. Лобачевского д.2/3.

UDC 519.6: 533.1: 620.1 DOI:10.25729/ESI.2023.30.2.006

66

Non-stationary two-dimensional numerical model of convective-film cooling of a plate based on explicit finite difference predictor-corrector scheme

Alexey L. Tukmakov^{1,2}, Andrey V. Schukin¹, Vitaliy V. Kharkiv¹, Nadezhda A. Tukmakova¹, Adel A. Akhunov¹, Dmitry A. Tukmakov²

¹Kazan National Research Technical University, Russia, Kazan, *tukmakov@imm.knc.ru* ²Federal Research Center Kazan Scientific Center RAS, Russia, Kazan.

Abstract. The paper presents a non-stationary model of the flow of a viscous compressible heat-conducting gas, which makes it possible to describe the thermal and velocity fields created by the main high-temperature flow flowing from the outside of the plate, the internal cooling flow and the jet that creates a cooling film on the protected surface. The gas dynamics is described based on the numerical solution of the Navier-Stokes system of equations by the explicit McCormack method with splitting of the original operator in spatial directions and a nonlinear correction scheme. The block finite-difference grid was constructed by the Thompson method with clustering of nodes in the near-wall region. The algebraic Smagorinsky model is used as a subgrid turbulence model. The Seidel iterative scheme for the stationary heat conduction equation in generalized curvilinear coordinates is written.

Keywords: navier-Stokes equations, explicit McCormack scheme, heat equation, near-wall functions, convective-film cooling

Acknowledgements: The work was carried out within the framework of the state task of the FRC KazSC RAS

References

- 1. Lokai V.I., Bodunov M.N., Zhuikov V.V., Shchukin A.V. Effektivnost' plenochnogo ohlazhdeniya ploskoj poverhnosti v uskoryayushchemsya potoke pri vduve vozduha cherez veernye otverstiya [Heat transfer in cooled parts of gas turbine engines]. Moscow: Mashinostroenie [Moscow: Mechanical Engineering], 1993, 287 p.
- Marchukov E.Y., Starodumov A.V., Ilyinkov A.V., Shchukin A.V., Ermakov A.M., Takmovtsev V.V., Popov I.A. Effektivnost' plenochnogo ohlazhdeniya ploskoj poverhnosti v uskoryayushchemsya potoke pri vduve vozduha cherez veernye otverstiya [The efficiency of film cooling of a flat surface in an accelerating flow with air blowing through fan holes]. Teploenergetika [Thermal power engineering], 2022, no. 4, pp. 70-80.
- Han J.C. Advanced cooling in gas turbines 2016 Max Jakob memorial award paper. Journal of heat transfer, 2018, v. 140, no. 11.
- 4. Fathi M., Nejat A. Conjugate heat transfer investigation of impingement cooling for ribbed internal passage of a turbine vane. International Journal of thermal sciences, 2022, vol. 178.
- 5. Krewinkel R. A review of gas turbine effusion cooling studies. International Journal of heat and mass transfer, 2013, v. 66, pp. 706-722.
- 6. Kim M. Shin D., Kim J., Lee B., Lee J. Experimental investigation of effusion and transpiration air cooling for single turbine blade. Applied thermal engineering, 2021, v. 182.
- 7. Zhang J., Zhang S., Wang C., Tan X. Recent advances in film cooling enhancement: A review. Chinese Journal of Aeronautics, 2020, v. 33, no. 4, pp. 1119-1136.
- 8. Krishna V.G., Anand K.M. Parammasivam thermal barrier coated surface modifications for gas turbine film cooling: a review. Journal of thermal analysis and calorimetry, 2021, v. 146, no. 2, pp. 545-580.
- 9. Volkov K.N., Emelyanov V.N. Modelirovanie krupnyh vihrej v raschetah turbulentnyh techenij [Modeling of large eddies in calculations of turbulent flows]. Moscow: FIZMATLIT, 2008, 368 p.
- 10. Yurokina Y.V. Neustojchivost' Kel'vina-Gel'mgol'ca v ploskom sloe smesheniya [Kelvin-Helmholtz instability in a flat mixing layer]. Matematicheskoye modelirovaniye [Mathematical Modeling], 1999, vol. 11, no. 4, pp. 83-99.
- 11. Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetah slozhnyh techenij [Modeling of turbulence in calculations of complex flows]. Izd-vo Politekhnicheskogo universiteta [Publishing house of the Polytechnic University], 2012, 88 p.
- 12. Kovenya V.M., Tarnavskii G.A., Cherny S.G. Primenenie metoda rasshchepleniya v zadachah aerodinamiki. [Application of the splitting method in problems of aerodynamics]. Novosibirsk: Nauka.Sibirskoye otdeleniye [Novosibirsk: Science. Siberian branch], 1990, 242 p.
- 13. Fletcher K. Vychislitel'nyye metody v dinamike zhidkostey [Computational methods in fluid dynamics]. Moscow: Mir, 1991, v. 2, 502 p.
- 14. Steger J.L. Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries, AIAA Journal, 1978, v. 16, no. 7, pp. 679-686.

- 15. Azharonok V.V., Tukmakov A.L. Dinamika rabochey sredy diffuzionno- okhlazhdayemogo elektrorazryadnogo SO2–lazera pri periodicheskom teplovydelenii v okrestnosti osi razryadno-rezonatornoy trubki [Dynamics of the working medium of a diffusion-cooled electric-discharge CO2 laser with periodic heat release in the axial region of its cylindrical resonator]. Inzhenerno-fizicheskiy zhurnal [Journal of engineering physics and thermophysics], 2014, v. 87, no 6, pp. 1469-1479.
- 16. Tukmakov A.L., Tukmakov D.A. Chislennoe issledovanie vliyaniya parametrov dispersnyh chastic na osazhdenie tverdoj fazy elektricheski zaryazhennoj polidispersnoj gazovzvesi [Numerical study of the influence of the parameters of dispersed particles on the deposition of the solid phase of an electrically charged polydisperse gas suspension]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika [Proceedings of the Saratov University. New series. Series: Mathematics. Mechanics. Informatics], 2022, v. 22, no. 1, pp. 90-102.
- 17. Tukmakov D.A. Chislennoye modelirovaniye rasprostraneniya udarnoy volny iz gaza v elektricheski zaryazhennuyu i neytral'nuyu gazovzvesi v ploskom kanale [Numerical modeling of shock wave propagation from gas into electrically charged and neutral gas suspensions in a flat channel]. Fundamental'nyye i prikladnyye problemy tekhniki i tekhnologii [Fundamental and applied problems of engineering and technology], 2020, no. 2, pp. 9-18.
- 18. Tukmakov D.A. CHislennoe modelirovanie vzaimodejstviya gazovzvesi s udarnoj volnoj kontinu-al'nymi matematicheskimi modelyami s ideal'noj i dissipativnymi nesushchimi sredami [Numerical modeling of the interaction of a gas suspension with a shock wave by continuum mathematical models with ideal and dissipative carrier media]. Vestnik YUUrGU. Seriya: Vychislitel'naya matematika i informatika [Bulletin of SUSU. Series: Computational mathematics and informatics], 2022, v. 11, no. 4, pp. 67-87.
- Efremov V.R., Kurulin V.V., Kozelkov A.S., Kurkin A.A., Utkin D.A. Ispol'zovanie pristenochnyh funkcij dlya modelirovaniya turbulentnogo teplovogo pogranichnogo sloya [Use of near-wall functions for modeling a turbulent thermal boundary layer]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of computational mathematics and mathematical physics], 2019, v. 59, no. 6, pp. 1037-1046.
- 20. Lutsky A.E., Severin A.V. Prostejshaya realizaciya metoda pristenochnyh funkcij [The simplest implementation of the near-wall functions method]. Preprinty IPM im. M.V. Keldysha RAN [Preprints of IPM named after M.V. Keldysh RAS], 2013, no. 38.
- 21. Mukhachev G.A., Shchukin V.K. Termodinamika i teploperedacha [Thermodynamics and heat transfer]. Matematicheskoye modelirovaniye [M.: Higher school], 1991, 479 p.
- 22. Muzafarov I.F., Utyuzhnikov S.V. Primenenie kompaktnyh raznostnyh skhem k issledovaniyu ne-stacionarnyh techenij szhimaemogo gaza [Application of compact difference schemes to the study of non-stationary flows of a compressible gas]. Matematicheskoye modelirovaniye [Mathematical modeling], 1993, no. 3, pp. 74-83.

Tukmakov Aleksey Lvovich. Doctor of Physical and Mathematical Sciences, Professor of the Kazan National Research Technical University. Main areas of research: fluid and gas mechanics, SPIN: 9496-7540, AuthorID: 6385, tukmakov@imm.knc.ru, Kazan, st K. Marx 10.

Schukin Andrey Viktorovich. Doctor of Technical Sciences, Professor of the Kazan National Research Technical University. Main areas of research: thermal physics. SPIN: 9930-7392, AuthorID: 27448, a.v.shchukin@rambler.ru, Kazan, st. K.Marx 10.

Kharkiv Vitaliy Viktorich. Candidate of Technical Sciences, Associate Professor of Kazan National Research Technical University. Main areas of research:chemical technology processes. SPIN: 7055-7282, AuthorID: 811526, v.v.kharkov@gmail.com, Kazan, St. K.Marx 10.

Tukmakova Nadezhda Alekseevna. Candidate of Technical Sciences, Associate Professor of Kazan National Research Technical University. Main areas of research: fluid and gas mechanics fluid and gas mechanics, SPIN: 3245-6962, AuthorID: 908006, Kazan, nadejdatukmakova@yandex.ru, St. K.Marx 10.

Akhunov Adel Airatovich. Postgraduate student of the Kazan National Research Technical University. Main areas of research: fluid and gas mechanics. SPIN: 1040-8375, AuthorID: 857165, white-bars95@yandex.ru, Kazan, st. K.Marksa 10.

Tukmakov Dmitry Alekseevich. Candidate of Physics and Mathematics Sci., Researcher at the Federal Research Center of the Kazan Scientific Center of the Russian Academy of Sciences. Main areas of research: fluid and gas mechanics. AuthorID: 739648, SPIN: 3556-8576, tukmakovda@imm.knc.ru, Kazan, st. Lobachevsky h.2/31.

Статья поступила в редакцию 06.02.2023; одобрена после рецензирования 24.03.2023; принята к публикации 12.05.2023.

The article was submitted 02/06/2023; approved after reviewing 03/24/2023; accepted for publication 05/12/2023.